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Abstract
We have investigated the thermal properties of electron doped perovskite manganite CaMnO3,
the end member (n = ∞) of the Ruddlesden–Popper (RP) calcium manganates series with
cation doping at the A-site. In this paper the functional relation between the lattice distortions
and the thermal properties is determined and compared to available reports. The temperature
dependence of the lattice specific heat (Cv(lattice)) of Ca1−x LnxMnO3 (x = 0.05, 0.10, 0.15,
0.20) with Ln(= La, Ce, Pr, Nd, Th, Bi) doping at the A-site has been studied as a function of
temperature (10 K � T � 500 K) by means of a rigid ion model (RIM) after modifying its
framework to incorporate the van der Waals interactions. Strong electron–phonon interactions
are present in these compounds, which are responsible for the variation of the lattice specific
heat with cation doping of varying size and valency. We have found that the calculated thermal
properties reproduce well the corresponding experimental data, implying that modified RIM
represents properly the nature of these perovskite manganite systems. We demonstrate that the
electron concentration, size mismatch and Jahn–Teller (JT) effects are the dominant factors,
whereas charge mismatch and buckling of Mn–O–Mn angle influence the thermal properties to
a lesser degree in the ferromagnetic state. In the insulating paramagnetic state, JT distortions
vary linearly and influence the thermal properties. These specific heat results can be further
improved by including the ferromagnetic spin wave and charge order contributions to the
specific heat.

1. Introduction

The search for new magnetoresistive materials has commanded
much attention for the past few years due to the enormous
variety of fascinating physical properties exhibited. The need
for new magnetic recording devices and an understanding
of the phenomena at some fundamental level has provided
a further impetus for the discovery of CMR and GMR
materials. A great deal of work was devoted to the hole
doped manganites with the perovskite structure in these last
years, owing to their spectacular colossal magnetoresistance
(CMR) properties. In contrast, very few investigations were
performed on the electron doped manganites, corresponding to
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Mn(IV)-rich perovskites. Such compounds should be of great
interest if one considers the magnetic and transport properties
of the perovskites Ca1−x Bix MnO3, with x ranging from 0.25 to
0.10 [1] and non-saturated ferromagnetism of Ca1−x Smx MnO3

with 0 < x < 0.12 [2]. Although electron doped manganites
generally exhibit a smaller magnetoresistance ratio than their
hole doped counterparts, the study of electron doped ones
is important for the understanding of the mechanisms which
govern the CMR properties.

Recently, Zeng et al [3] and Caspi et al [20]
reported structural, magnetic and transport measurements
for Ca1−x CexMnO3 (x = 0.2) below 400 K. The
results indicate that the formal oxidation state of cerium
is Ce4+, leading to mixed valence, Mn3+ and Mn4+, in
CaMnO3. A large magnetoresistance was observed for
the Ca0.925Ce0.075MnO3 phase. The systematic exploration of
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the perovskites Ca1−x REx MnO3 and Ca1−xThx MnO3 [4] has
shown that electron concentration is a predominant factor
governing the CMR in these manganites.

CaMnO3, the parent compound of electron doped colossal
magnetoresistance materials, was studied a long time back
by Yankel [5] and Wollan et al [6]; in comparison the study
of electron doped manganites is a recent phenomenon. It is
established that stoichiometric CaMnO3 is antiferromagnetic
insulator without eg carriers and shows G-type spin ordering
below TN due to the inherent superexchange interaction
between the neighbouring Mn4+ sites. The substitution of
divalent cation Ca by trivalent or tetravalent ions (referred to
as electron doping of the eg orbital) leads to the simultaneous
occurrence of Mn3+ and Mn4+ ions in the crystalline
structure and significantly modifies the structural and transport
properties of CaMnO3, presenting complex phase diagrams
including phases with different magnetic and charge order.
With an increase of electron density n (=x), an insulator–
metal crossover is induced. Accordingly, the ferromagnetic
component, which can be ascribed to the double-exchange
interaction mediated by itinerant eg carriers, is enhanced in
the spin ordered phase. At the same time this doping (with
Ln3+ or Th4+ cations) at the A-site introduces distortions in
the cubic geometry of the compound and so these electron
doped compounds are found to be orthorhombic within the
Pnma space symmetry at low temperatures. The orthorhombic
deformation of the cubic perovskite lattice is described in
terms of rotation of MnO6 octahedra of the so-called GdFeO3

structure and the Jahn–Teller (JT) distortion. The JT distortion
can be Q2-mode (apically compressed along the b axis) or Q3-
mode (apically elongated) on either side of optimal x doping
(corresponding to maximum magnetoresistance ratio). This
cooperative JT deformation of the MnO6 octahedron plays a
vital role in determining the properties of these compounds.

Taking into consideration these results and the fact that
the CMR properties may be highly sensitive to the carrier
concentration, as demonstrated for the hole doped manganites,
the Ca1−x Lnx MnO3 manganites have been reinvestigated to
study their thermal properties by varying x in the range 0.05 <

x < 0.20 for Ln = La3+, Ce4+, Pr3+, Nd3+, Th4+, Bi3+.
As the electron concentration in these manganites is directly
related to the valence of the doping element, only half the
amount of Th(IV) or Ce(IV) (compared to Ln(III)) is necessary
to reach the optimal CMR, i.e. x = 0.15 and 0.08 for
Ca1−xLnx MnO3 and Ca1−x(Th/Ce)x MnO3, respectively [7].
In the present investigation, depending on the size of the doped
cation we have divided the case of cation doping at the A-site
in CaMnO3 manganites into two categories:

(a) when the doped ion radius is smaller (Ce, Nd, Th) and
(b) when the doped ion radius is larger (La, Bi) than or equal

(Pr) to that of the parent Ca2+ ion.

To the best of our knowledge, no systematic investigation
of thermal properties of these electron doped manganites has
been carried out in the past, whereas it is well established
that strong electron–phonon coupling is present in these
compounds. This strong coupling is one of the most relevant
contributions in determining the conduction mechanism in

these manganites, and it can be affected by lattice distortions,
substantially. Therefore, the study of the lattice thermal
properties of these compounds may be taken as a starting point
for the consistent understanding of the more complex physical
properties of the electron doped manganites. The main focus of
the present paper is on exploring the temperature dependence
of the lattice specific heat of CaMnO3 in the electron doped
region of the phase diagram. Recently, we have successfully
portrayed the thermodynamic and elastic properties of some
manganites [11–15] by using a modified rigid ion model
(MRIM). Motivated by the success and versatility of the model,
we are exploring the thermal properties of Ca1−x Lnx MnO3

(Ln = La3+, Ce4+, Pr3+, Nd3+, Th4+, Bi3+) for x varying
from 0.05 to 0.2 using the modified RIM, and it is probably
the first time that this has been done. The essentials of the
MRIM formalism and the results obtained from its application
are presented in subsequent sections.

2. Formalism of RIM

We have formulated the modified rigid ion model (MRIM) by
keeping the effect of long-range (LR) Coulomb attractions, the
short-range (SR) Hafemeister–Flygare-type (HF) [8] overlap
repulsion effective up to the next nearest neighbour atoms
and the van der Waals attraction due to dipole–dipole (d–d)
interactions. The potential describing the formalism of MRIM
is expressed as

φ = φC
kk′ + φR

kk′ + φvdW
kk′ (1)

where the first term is the LR Coulomb attraction potential
expressed as

φC
kk′ (r) = −e2

2

∑

kk′
Zk Zk′r−1

kk′ (2)

with rkk′ as the separation between the two atoms designated k
and k ′ and summation is performed over all the kk ′ ions. The
overlap repulsive energy φR

kk′ (r) according to the Hafemeister–
Flygare-type (HF) [8] interaction extended up to the second
neighbour is expressed as

φR
kk′ (r) =

∑

i

ni biβ
kk′
i exp{(rk + rk′ − rkk′ )/ρi }

+ bi n
′
iβ

kk
i exp {(2rk − rkk) /ρi }

+ bi
n′′

i

2
βk′k′

i exp {(2rk′ − rk′k′ ) /ρi} . (3)

Here rkk′ appearing in the first term on the right represents
the separation between the nearest neighbours while rkk and
rk′k′ appearing in the following two terms are the second-
neighbour separations. rk (rk′ ) is the ionic radius of the k
(k ′) ion. n (n′ and n′′) is the number of nearest (next nearest)
neighbour ions. In ABO3 (like CaMnO3) perovskite structure,
k represents the cation (A, B) and k ′ denotes the type (O1, O2)
of ion. The summation is performed over the ion pair (A–O)
and (B–O). bi and ρi are the hardness and range parameters
for the i th cation–anion pair (i = 1, 2) respectively and βkk′

i is
the Pauling coefficient [9] given by

βkk′
i = 1 + Zk

Nk
+ Zk′

Nk′
(4)

2
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Zk (Zk′ ) and Nk (Nk′ ) are the valence and the number of
electrons in the outermost orbit of the k (k ′) ion respectively.
The rkk′ , and rkk and rk′k′ , are obtained for some doping
concentration (x) of Ln = La, Ce, Pr, Nd, Th, Bi by using
the well known Vegard law [24] using the cell parameters
of undoped compounds like CaMnO3 and NdMnO3. The
contribution of the van der Waals (vdW) attraction for the
dipole–dipole interaction is determined by using the Slater–
Kirkwood variational (SKV) method [10] and was defined in
our earlier papers [11–15]:

φvdW
kk′ = Ckk′ r−6

kk′ and

Ckk′ = 3eh

4πm
αkα

′
k

[(
αk

Nk

)1/2

+
(

αk′

N ′
k

)1/2
]−1 (5)

where e and m are the charge and mass of the electron
respectively. αk (α′

k) is the polarizability of the k (k ′) ion. Nk

(N ′
k ) is the effective number of electrons responsible for the

polarization of the k (k ′) ion.
The model parameters, hardness (b) and range (ρ), are

determined from the equilibrium condition
[

dφ

dr

]

r=r0

= 0 (6)

and the bulk modulus

B = 1

9Kr0

[
d2φ

dr 2

]

r=r0

(7)

where K is the crystal structure-dependent constant and r0 is
the equilibrium nearest neighbour distance. The expressions
for calculating the thermodynamic properties are taken from
our earlier papers [11–15].

The model parameters obtained from the equations (6)
and (7) have been used to compute the thermodynamic
properties of the electron doped compounds. The cohesive
energy for Ca1−xLnx MnO3 is calculated using equation (1)
and other thermal properties like the molecular force constant
( f ), reststrahlen frequency (ν0), and Debye temperature (θD),
Grüneisen parameter (γ ) and heat capacity are computed using
the expression given in [12, 15]. The expression for the lattice
specific heat is

CV (lattice) = 9R

(
T

θD

)3 ∫ θD/T

0

ex x4

ex − 1
dx . (8)

And at the very low temperatures (T < θD/50) the specific
heat is calculated by using

CV (lattice) = 12π4 p

5

[
NkB

[
T

θD

]3
]

(9)

where p is the number of atoms in one formula unit. N is
the Avogadro number, kB is the Boltzmann constant, R is the
universal gas constant and θD is the Debye temperature. The
Debye temperature (θD) is given by the expression

θD = hν

kB
(10)

with h as the Planck constant and ν as the reststrahlen
frequency

ν = 1

2π

[
f

μ

] 1
2

(11)

where μ is the reduced mass and f is the molecular force
constant given by

f = 1

3

[
φ′′SR

kk′ (r) + 2

r
φ′SR

kk′ (r)

]

r=r0

(12)

with φSR
kk′ (r) the short-range nearest neighbour part of φkk′ (r).

The primes denote the first-order and second-order derivatives
of the φSR

kk′ (r) with respect to the inter-ionic separation (r ).
We calculated the molecular force constant as a function of
temperature, and the values of the Debye temperature and
specific heat of the lattice over a fairly large interval of
temperature follow. The Grüneisen parameter is calculated
using the relation

γ = −r0

6

[
φ′′′

kk′ (r)

φ′′
kk′ (r)

]

r=r0

(13)

where r0 is the equilibrium distance between the k th and
k ′th ions and the primes in φkk′ (r) denote the third-order and
second-order derivatives of the φkk′ (r) with respect to the inter-
ionic separation (r). The results thus obtained are presented
and discussed below.

3. Results and discussion

3.1. Model parameters

The values of input data like the unit cell parameters (a, b,
c) and inter-ionic distances are taken from [1, 4, 7, 16–22]
for the evaluation of model parameters (b1, ρ1) and (b2,
ρ2) corresponding to the ionic pairs Mn3+/Mn4+–O2− and
Ln3+/4+/Ca2+–O2− (Ln = La, Ce, Pr, Nd, Th, Bi) for different
compositions x (0.05 � x � 0.2) and temperatures (10 K �
T � 500 K) for electron doped Ca1−x Lnx MnO3. Taking the
lattice parameter of CaMnO3 [53] and other pure manganites
ReMnO3 [23], the well known Vegard law [24] is used to
calculate the input lattice parameters for some compositions
(x) of Ca1−x Lnx MnO3 for which the experimental values are
not available. The vdW coefficients Ckk′ were calculated
using the SKV method [10] for the present manganites. The
values of the model parameters (b1, b2, ρ1 and ρ2) for various
compositions (x) of Ca1−x LnxMnO3 are listed in table 1. The
decreasing trend of the hardness parameter b1 for La, Pr and Th
doping indicates the lesser distortion of the perfect octahedra
of CaMnO3 compared to Nd, Ce, Bi doping and subsequent
decrease in the strength of the crystal with higher levels of
doping. The hardness parameter b2 for Ln3+/Ca2+–O2− ion
pairs increases for larger sized rare earth cation doping (La.
Bi) while it decreases for equal or smaller cation doping (Pr,
Nd). The Th4+ and Ce4+ doping is different from the above
two cases; here b2 increases for these doping concentrations.
The range parameter ρ1 of doped CaMnO3 increases slightly
(except for some concentrations of Th and Pr) with all kinds

3
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Table 1. The A-site cation radius, tolerance factor and model parameters for orthorhombic Ca1−x Lnx MnO3 compounds below the transition
temperature TN.

Compound rA (Å)
Tolerance
factor t

b1 × 10−19

(J) (Mn–O)
b2 × 10−19 (J)
(Ca/Ln–O)

ρ1 (Å)
(Mn–O)

ρ2 (Å)
(Ca/Ln–O)

CaMnO3 1.180 0.945 0.847 0.797 0.287 0.442

Ca0.75La0.25MnO3 1.189 0.935 0.803 1.158 0.293 0.516
Ca0.80La0.20MnO3 1.187 0.937 0.807 1.133 0.292 0.509
Ca0.83La0.17MnO3 1.186 0.938 0.807 1.126 0.290 0.506
Ca0.87La0.13MnO3 1.185 0.940 0.825 1.141 0.291 0.506
Ca0.90La0.10MnO3 1.184 0.941 0.837 1.152 0.291 0.506

LaMnO3 1.216 0.905 0.719 1.090 0.314 0.542

Ca0.80Ce0.20MnO3 1.150 0.923 0.902 1.353 0.312 0.556
Ca0.85Ce0.15MnO3 1.158 0.929 0.885 1.340 0.306 0.548
Ca0.90Ce0.10MnO3 1.165 0.934 0.868 1.324 0.299 0.539
Ca0.95Ce0.05MnO3 1.173 0.940 0.850 1.312 0.292 0.532

PrMnO3 1.179 0.892 0.617 0.551 0.292 0.411

Ca0.82Pr0.18MnO3 1.180 0.935 0.811 0.792 0.290 0.447
Ca0.86Pr0.14MnO3 1.180 0.937 0.804 0.785 0.288 0.444
Ca0.90Pr0.10MnO3 1.180 0.940 0.795 0.775 0.285 0.441

NdMnO3 1.162 0.886 0.576 0.512 0.283 0.394

Ca0.80Nd0.20MnO3 1.176 0.933 1.048 0.760 0.318 0.440
Ca0.85Nd0.15MnO3 1.177 0.936 1.071 0.770 0.319 0.441
Ca0.90Nd0.10MnO3 1.178 0.939 1.094 0.779 0.319 0.441

Ca0.80Th0.20MnO3 1.162 0.928 0.729 1.095 0.289 0.506
Ca0.85Th0.15MnO3 1.167 0.932 0.747 1.103 0.287 0.504
Ca0.90Th0.10MnO3 1.171 0.936 0.761 1.107 0.285 0.501
Ca0.95Th0.05MnO3 1.176 0.941 0.774 1.109 0.283 0.497

Ca0.80Bi0.20MnO3 1.192 0.938 0.876 0.909 0.298 0.473
Ca0.85Bi0.15MnO3 1.189 0.940 0.872 0.916 0.296 0.471
Ca0.90Bi0.10MnO3 1.186 0.942 0.852 0.917 0.292 0.468

of doping whereas ρ2, being more sensitive (as the doping
is only at the A-site which affects the Ln3+/Ca2+–O2− pair
predominantly), decreases only for the smaller sized rare earth
cation doping (Nd3+) and remains almost unaffected by the
same size cation Pr3+.

3.2. Cohesive properties

We calculated the cohesive energies of Ca1−x Lnx MnO3

compounds using equation (1) and reported them in tables 3
and 4. The negative values of the cohesive energy indicate
the stabilities of these compounds. It has been noticed while
calculating the values of the cohesive energy using equation (1)
that the contribution from the short-range repulsion is less
than 10% of the total cohesive energy and the van der Waals
term contributes around 5%. The experimental values of
the cohesive energy for Ca1−x Lnx MnO3 are not available,
but our calculated values are close to the reported values
−139.70 eV and −146.2 eV for the compounds LaMnO3 [25]
and PrMnO3 [26] manganites, respectively. To test the validity
of our model, we calculated the lattice energies of these
compounds using the generalized Kapustinskii equation [27]
which uses the ionic strength of the crystal defined as

I = −(1/2)

t∑

k

nk z2
k (14)

where t is the number of the type of ions in the formula unit,
each of number nk and charge zk . In our calculations the value

of the ionic strength for the CaMnO3 compound is found to be
16 and this value decreases slightly due to cation doping at the
A-site. According to the generalized Kapustinskii equation the
lattice energies of crystals with multiple ions are given as

U(kJ mol−1)−1 = −1213.9

〈r〉
(

1 − ρ

〈r〉
) ∑

nkz2
k (15)

where 〈r〉 is the weighted mean cation–anion radius sum (using
Goldschmidt radii) and ρ is taken as the average of our model
parameters ρ1 and ρ2. The value of the lattice energy of
the compounds as estimated using the empirical Kapustinskii
equation is found to be in good agreement with our calculated
values, giving further confidence in the validity of our model
(the average deviation is less than 2%). It can be inferred from
the results for the cohesive energy (table 3) that the stability
of doped compounds is somewhat less compared to that of the
parent compound, and this can be correlated with the observed
distortions of the lattice compared to the parent compound.
Analysing the results on cohesive energy in the paramagnetic
phase (table 4) shows that the stability of these compounds
has enhanced in this phase compared to spin ordered phase
(ferromagnetic or antiferromagnetic) (table 3). Recently, the
Madelung energy of the valence skip compound BaBiO3 with
perovskite structure was reported to be around −165 eV (which
is the first term of our equation (1)) [55].

4
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3.3. Bulk modulus

The value of the bulk modulus for the compounds under
investigation is an important input parameter from the point
of view of critical determination of model parameters, but the
experimental values of the bulk modulus of Ca1−x Lnx MnO3

are not available in the literature for most of the compounds
and a few available values for the same compound show
large deviations, as reported by various investigators; e.g. the
value of the bulk modulus of LaMnO3 was reported to be
85.4 GPa [28], 95.9 GPa [29], 108 GPa [30], 118.7 GPa [31],
123 GPa [32], 133 GPa [33], 143 GPa [34] and 182 GPa [54],
which makes the choice of the bulk modulus value as input
parameter a difficult task. So we thought of making a study
of the determination of the bulk modulus of the ReMnO3

(Re = rare earth) and the diluted compounds systematically,
on the basis of formulations of atoms in molecules theory.

An interesting application of the atoms in molecules the-
ory (AIM) is the partitioning of static thermodynamic prop-
erties in condensed systems; this has successfully predicted
the compressibility of various halides and spinels [35]. The
theory predicts that the bulk properties of any complex com-
pound can be partitioned into the properties of its constituent
groups/atoms. Since all AIM atomic properties are additive
and quantum atoms fill the space, bulk or thermodynamic prop-
erties may be partitioned into atomic or group contributions.
We have considered that the molar volume V can be written
as the sum over atomic volumes (Vi ) such that atomic volumes
fill up the entire space of the lattice within the given structure
and space symmetry. Hence, it was stated that the inverse of
the bulk modulus is the simple weighted average of the atomic
compressibilities [35]:

κ =
∑

i

fiκi and
1

B
=

∑

i

fi
1

Bi

where fi = Vi/V

(16)

where fi is the fractional volume occupancy due to quantum
subsystem i in a unit formula volume, B is the bulk modulus
of the compound and K is its compressibility. Here, we
have considered oxygen atoms as the bulkiest and most
compressible, and the local compressibility varies according
to the varying cation volumes and their relative occupation
factor fi , along the lines of Pendas et al [35]. The oxide
ions are plastic constituents of these structures. The values
of the ionic radii are taken from [36] and the data on atomic
compressibility from [37]. The compounds under study are
all manganite perovskites and the lattice space is dominated
by the MnO6 octahedra with relatively small cations at the
A-site. As proposed by Pendas et al [35], to a large extent
the polyhedral bulk modulus is constant, so we expect all
the bulk moduli of these compounds to cluster around some
common value which is near the polyhedral bulk modulus.
We have computed the bulk modulus using equation (16) on
the basis of AIM theory and in this analysis the octahedra are
considered to be undistorted and perfect. The values obtained
by us are represented as B0 in table 2. The bulk moduli
calculated on the basis of AIM theory are found to be in good

agreement with the experimental data (table 2). The calculated
value of 75.6 GPa for CaMnO3 is comparable to the value of
66.5 GPa reported by Buch et al [29]. The calculated value for
LaMnO3 is 103.43 GPa which is close to two reported values—
95.9 GPa [29] and 108 GPa [30]. The calculated value of
80.43 GPa for Ca0.8La0.2MnO3 is close to the value of 85 GPa
at 60 K reported by Zhu et al [38].

Within the perovskite structure, Re3+ occupies the centre
of the dodecahedron of oxygen. But due to orthorhombic
deformation of the lattice, the coordination number of Re3+
reduces to 9, as three oxygen atoms remain essentially non-
bonded. So we have considered the ionic radii of A-site
cations of coordination number 9, from [36]. Now, if in
this environment the Re3+ is substituted by a smaller cation,
the dodecahedron of oxygen will try to collapse towards the
central Re3+ cation and in turn the Mn–O–Mn angle will
buckle. If we investigate the rare earth manganites ReMnO3

(Re = La–Nd) where the A-site cation radius reduces down
the series, the buckling of the Mn–O–Mn angle progressively
increases, which leads to increased distortions of the lattice.
As the cation radius decreases down the series, the tolerance
factor t (t = (rA + rO)/

√
2(rB + rO)), whose value for

CaMnO3 quasicubic perovskite structure is around 1, also
reduces (table 1), so the structure progressively deviates from
the quasicubic to the orthorhombic form and a decrease in the
unit cell volume can be observed. This decrease in cell volume
corresponds to an increase in bulk modulus of the compound.
So, the effect of decreasing the superexchange angle Mn–O–
Mn (〈θ〉) from its ideal value of 180◦ for cubic perovskite
(or increasing the tilt angle (〈ω〉) of the MnO6 octahedra
around the pseudocubic direction [111]) is to increase the bulk
modulus of the compound. It can now be visualized that
the buckling of the Mn–O–Mn angle due to substitution of a
smaller cation at the A-site can substantially increase the bulk
modulus of the compound as the tilting of the octahedra with
decreasing cation size at the A-site will fill the unit cell volume
effectively. This is evident from our results depicted in table 3
and in figure 1; the bulk modulus of NdMnO3 is greater than
that of PrMnO3 which in turn is greater than the LaMnO3

value. These results are near the earlier reports [42]. At the
same time, the Debye temperature is expected to increase as
well down the series from LaMnO3 to NdMnO3 (table 3).

When we consider the doping at the A-site in ReMnO3

compounds, then the local compressibilities of impurities with
respect to host ions are governed by the size difference and
tuned by the formal charge mismatch between host and guest
cations. We considered the effect of charge and size mismatch
along with the octahedral distortions due to the Jahn–Teller
effect on the bulk modulus of the compounds. These factors
will determine the change in the unit cell volume, which in
turn will change the global bulk modulus of the compound.
The formal expression for calculating the JT distortion of BON

octahedra is taken as

�JT =
√√√√(1/N)

N∑

i

((di − 〈d〉)/〈d〉)2 (17)

where 〈d〉 is the average value of the di bond distances in
BON octahedra. This distortion is found to be very small
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Table 2. A-site variance, lattice distortions and bulk modulus (based on AIM theory) for Ca1−x Lnx MnO3 manganites.

Compounds

Variance

(A-site) σ 2 (Å
2
)

BO (GPa)
(AIM)

JT distortion
�JT × 10−3

Charge
mismatch σC

Size
mismatch σm

Octahedra
rotation φS

CaMnO3 0.00 75.61 1.747 0.500 2.226 0.982
Earlier reports 66.5a

Ca0.75La0.25MnO3 2.43 81.48 16.086 0.600 2.128 0.980
Ca0.80La0.20MnO3 2.07 80.34 13.218 0.579 2.147 0.981
Earlier reports 85b

Ca0.83La0.17MnO3 1.83 79.67 11.497 0.567 2.158 0.981
Ca0.87La0.13MnO3 1.47 78.67 9.203 0.550 2.174 0.981
Ca0.90La0.10MnO3 1.17 77.96 7.482 0.538 2.186 0.981

LaMnO3 0.00 103.43 59.104 1.000 1.885 0.977
Earlier reports 84.6c

95.9a

Ca0.80Ce0.20MnO3 36.00 85.51 3.575 0.667 2.080 0.981
Ca0.85Ce0.15MnO3 28.69 83.18 3.700 0.622 2.115 0.981
Ca0.90Ce0.10MnO3 20.25 80.93 3.862 0.579 2.151 0.981
Ca0.95Ce0.05MnO3 10.69 78.66 1.504 0.538 2.189 0.982

PrMnO3 0.00 119.15 56.925 1.000 1.828 0.968
Ca0.82Pr0.18MnO3 0.00 81.25 11.679 0.571 2.142 0.979
Ca0.86Pr0.14MnO3 0.00 80.15 9.471 0.554 2.161 0.980
Ca0.90Pr0.10MnO3 0.00 79.11 7.264 0.538 2.179 0.980

NdMnO3 0.00 124.37 68.425 1.000 1.802 0.966

Ca0.80Nd0.20MnO3 0.52 82.81 15.082 0.579 2.127 0.979
Ca0.85Nd0.15MnO3 0.41 80.92 11.748 0.558 2.151 0.980
Ca0.90Nd0.10MnO3 0.29 79.10 8.414 0.538 2.176 0.980

Ca0.80Th0.20MnO3 12.96 88.01 13.218 0.667 2.101 0.981
Ca0.85Th0.15MnO3 10.33 84.75 10.350 0.622 2.132 0.981
Ca0.90Th0.10MnO3 7.29 81.67 7.482 0.579 2.163 0.981
Ca0.95Th0.05MnO3 3.85 78.69 4.614 0.538 2.194 0.981

Ca0.80Bi0.20MnO3 5.76 80.67 5.625 0.579 2.156 0.981
Ca0.85Bi0.15MnO3 4.59 79.32 5.625 0.558 2.173 0.981
Ca0.90Bi0.10MnO3 3.24 78.07 7.056 0.538 2.190 0.981

a Reference [29], b Reference [38], c Reference [28].

Figure 1. Bulk modulus of CaMnO3, ReMnO3 (Re = La, Pr, Nd)
versus the molar volume of the basic perovskite cell. The solid line is
a guide, to depict the linear variation.

for MnO6 octahedra, and is reported in table 2. We expect
the bulk modulus to vary inversely with JT distortions; higher
distortions of MnO6 octahedra will mean a lower value of the

Figure 2. Variation of the octahedral distortion due to buckling of the
superexchange Mn–O–Mn angle (cos ω), size mismatch, bulk
modulus and JT distortions of CaMnO3 and ReMnO3 (Re = La–Nd)
compounds with the radius of the A-site cation.

bulk modulus of the compound (figure 3(a)). As this distortion
decreases with lowering temperatures, the bulk modulus will
slightly increase as we go towards lower temperatures from TN.
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Table 3. Bulk modulus, cohesive and thermal properties of orthorhombic Ca1−x Lnx MnO3 at low temperatures (below the transition
temperature TN).

Compound

Bulk
modulus B
(GPa)

� (eV)
(MRIM)

� (eV)
(Kapustinskii
equation)

f
(N m−1)

ν
(THz) �D (K) γ

CaMnO3 151.49 −156.25 −154.82 29.44 12.46 596.65 2.53
Earlier reports 147a 2–3b

Ca0.75La0.25MnO3 138.01 −150.46 −148.05 26.38 10.50 502.81 2.45
Ca0.80La0.20MnO3 140.61 −151.44 −149.09 26.87 10.82 518.30 2.46
Ca0.83La0.17MnO3 141.87 −152.04 −149.67 27.15 11.02 527.95 2.47
Ca0.87La0.13MnO3 144.18 −152.79 −150.17 27.40 11.27 539.99 2.47
Ca0.90La0.10MnO3 145.87 −153.35 −150.57 27.60 11.47 549.62 2.47

LaMnO3 109.72 −137.33 −136.61 21.77 7.48 358.07 2.42
Earlier reports 108c −139.7d 8.58e 302f

369g

Ca0.80Ce0.20MnO3 128.72 −149.31 −146.71 24.31 10.28 492.43 2.32
Ca0.85Ce0.15MnO3 134.30 −150.77 −147.87 25.26 10.72 513.30 2.36
Ca0.90Ce0.10MnO3 140.33 −152.24 −149.08 26.28 11.19 536.04 2.40
Ca0.95Ce0.05MnO3 146.31 −153.71 −150.23 27.30 11.69 559.89 2.44

PrMnO3 126.25 −141.35 −143.40 26.10 8.16 390.95 2.68
Earlier reports 164a −146.2h

Ca0.82Pr0.18MnO3 144.08 −153.34 −152.22 28.27 11.18 535.59 2.51
Ca0.86Pr0.14MnO3 145.97 −153.93 −152.94 28.64 11.46 548.99 2.53
Ca0.90Pr0.10MnO3 148.01 −154.53 −153.70 29.05 11.76 563.47 2.55

NdMnO3 133.17 −142.48 −144.66 27.50 8.34 399.31 2.76

Ca0.80Nd0.20MnO3 145.20 −152.71 −151.15 27.66 10.94 524.16 2.49
Ca0.85Nd0.15MnO3 146.62 −153.41 −151.69 27.82 11.23 537.83 2.49
Ca0.90Nd0.10MnO3 148.14 −154.13 −152.25 28.00 11.54 552.62 2.48

Ca0.80Th0.20MnO3 133.77 −150.60 −149.81 26.20 10.33 494.59 2.44
Ca0.85Th0.15MnO3 137.76 −151.79 −150.51 26.77 10.75 514.85 2.45
Ca0.90Th0.10MnO3 142.12 −153.00 −151.28 27.43 11.22 537.58 2.47
Ca0.95Th0.05MnO3 146.82 −154.26 −152.09 28.13 11.75 562.86 2.49

Ca0.80Bi0.20MnO3 140.13 −152.24 −150.85 27.15 10.58 506.64 2.46
Ca0.85Bi0.15MnO3 142.83 −153.13 −151.54 27.57 10.96 525.03 2.47
Ca0.90Bi0.10MnO3 146.02 −154.11 −152.42 28.16 11.41 546.67 2.49

a Reference [42], b Reference [44], c Reference [30], d Reference [28],
e Reference [45]; f Reference [46]; g Reference [47]; h Reference [26].

The change in bulk modulus will vary according to TN − T .
Above TN the effect of JT distortions is to increase the value
of bulk modulus. So we expect a minimum in the vicinity of
the magnetic transition. Figure 2 depicts the inverse relation
of bulk modulus and JT distortions of CaMnO3 and ReMnO3

(Re = La–Nd). The same inverse relation is observed in
electron doped compounds as well (figure 3(a)).

The expressions for the cation size and charge mismatch
at the A-site and B-site are

σm =
[

(1 − xA)rA + xArA′

(1 − xA)rMn3+ + xArMn4+

]
(18)

where xA is the concentration of the doped cation of radius
rA′ (CN = 9) at the A-site and rA is the radius of the Ca2+
cation (CN = 9). rMn3+ (CN = 6) is the radius of the Mn3+
ion in valence state III and rMn4+ (CN = 6) is the value for
valence state IV. Similarly replacing the radius rA (rA′ ) with
Ca2+ (Ln3+/4+) charge at the A-site and rMn with the valence
of Mn3+ and Mn4+ at the B-site, the charge mismatch can also
be calculated (table 2). The variation of the bulk modulus of
Ca1−xLaxMnO3 with charge and size mismatch at the A-site is
given in figures 3(b) and (c). Similar variation is observed for
other electron doped compounds as well.

The effect of buckling of the superexchange angle Mn–O–
Mn on distortions of the unit cell is accounted for via

φS = cos〈ω〉 = cos (π − 〈θ〉) /2 (19)

where the average tilting of the BO6 octahedra around the
pseudocubic direction [111} is 〈ω〉 and 〈θ〉 is the average
superexchange angle Mn–O–Mn.

The variations of the bulk modulus with these distortions
are given for Ca1−x Lax MnO3 in figure 3. Similar variation for
other electron doped compounds can be observed from table 3.
The values of various distortions are also given in table 2. It is
now appropriate to propose the following relation for the bulk
modulus of the distorted perovskite manganite:

BT = KS B0σm cos ω

exp (�JT) σC
(20)

where KS is the spin order-dependent constant of proportion-
ality, and its value is less than 1 for the ferromagnetic state and
more than 1 for the paramagnetic state, B0 is the bulk modulus
for undistorted structure calculated on the basis of AIM the-
ory, σm is the size mismatch, σC is the charge mismatch, �JT
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Figure 3. Relation of the bulk modulus to (a) JT distortions, (b) size mismatch, (c) charge mismatch (at the A-site) and (d) octahedral
distortion due to buckling of the superexchange Mn–O–Mn angle (cos ω) in Ca1−x Lax MnO3 compounds.

is JT distortion of MnO6 octahedra and cos ω is the effect of
buckling of the Mn–O–Mn angle. The value of the bulk mod-
ulus of the distorted structure is presented in table 4 as BT .
It can be observed from the table 4 that distortions change the
bulk modulus B0 by a factor of approximately 2–3 in insulating
paramagnetic phase and the calculated value after considering
the effect of various distortions is seemingly high compared to
previous reports. We report the bulk modulus of LaMnO3 in
its insulating paramagnetic phase as 212 GPa and similar high
values of bulk modulus were reported by several researchers in
the past. This value is close to the value of 182 GPa reported by
Youn et al [54] and 190 GPa for LaTiO3 [39] (table 4). The cal-
culated value of the bulk modulus of CaMnO3 is 255 GPa and
is close to the 211 GPa reported by Youn et al [54]. The value
for Ca0.8La0.2MnO3 is 220 GPa and this value is close to the re-
ported value of 235 GPa for La0.67Ca0.33MnO3 obtained by fit-
ting the volume compressibility data to the Birch–Murnaghan
equation of state [40].

We have displayed the variation of the bulk modulus of
electron doped compounds as a function of molar volume in
figure 4 and the bulk modulus is observed to be decreasing
with increasing basic perovskite molar cell volume. Similar
variation of the bulk modulus with the cell volume was
observed previously also by Zimmer et al and recently by
Shein et al for alkaline earth chalcogenides, ionic halides and
transition metal diborides [41]. For each type of doped ion a
linear variation is observed but with a different slope. Here,
it is interesting to note that the slopes of trivalent cation (La,
Pr, Nd, Bi) doped compounds are different from those for the
tetravalent compounds (Th, Ce) and the slopes for La, Nd and
Bi doped compounds are approximately the same. The natures

Figure 4. Variation of the bulk modulus of electron doped
compounds with the molar volume of the basic perovskite cell.

of the curves for Th and Ce doping are also similar, these both
being tetravalent impurities. For praseodymium (Pr) doping
in CaMnO3, the cation size variance at the A-site is nearly
zero and the experimentally observed cell volumes are nearly
constant; also it can be noticed from figure 4 that the slope
of this curve is different from those of all other curves, and
is the highest too. The reason appears to be its minimum
cation size variance. The slope of the La, Nd, Bi doped
series curves decreases as the variance increases, from La to Bi

8
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Table 4. Bulk modulus, cohesive and thermal properties of orthorhombic Ca1−x Lnx MnO3 manganites in the insulating paramagnetic phase.

Compound BT (GPa)
�
(eV)(MRIM)

� (eV)
(Kapustinskii
equation) f (N m−1) ν (THz) �D (K) γ

CaMnO3 255.00 −165.94 −164.59 49.56 16.16 774.10 3.53
Earlier reports 211a

Ca0.75La0.25MnO3 204.22 −157.90 −156.01 39.04 12.77 611.65 3.13
Ca0.80La0.20MnO3 220.29 −159.89 −158.07 42.07 13.54 648.56 3.27
Earlier reports 235b 650c

Ca0.83La0.17MnO3 224.62 −160.74 −158.68 42.76 13.83 662.53 3.28
Ca0.87La0.13MnO3 231.54 −161.73 −159.63 43.94 14.28 683.88 3.32
Ca0.90La0.10MnO3 236.77 −162.49 −160.30 44.80 14.62 700.24 3.35

LaMnO3 211.81 −148.21 −148.67 42.03 10.39 497.50 3.69
Earlier reports 190d

182a
−139.7e 470,

515f

Ca0.80Ce0.20MnO3 190.00 −157.00 −155.10 35.88 12.49 598.26 2.95
Ca0.85Ce0.15MnO3 205.07 −159.05 −156.88 38.57 13.24 634.28 3.06
Ca0.90Ce0.10MnO3 221.69 −161.08 −158.69 41.52 14.07 673.76 3.19
Ca0.95Ce0.05MnO3 239.18 −163.12 −160.42 44.63 14.94 715.86 3.32

PrMnO3 236.30 −151.08 −153.51 48.84 11.17 534.85 4.05
Earlier reports −146.2g

Ca0.82Pr0.18MnO3 225.71 −161.72 −160.68 44.29 13.99 670.36 3.34
Ca0.86Pr0.14MnO3 231.77 −162.52 −161.62 45.47 14.44 691.76 3.39
Ca0.90Pr0.10MnO3 238.92 −163.36 −162.66 46.90 14.95 715.89 3.46

NdMnO3 48.39 −151.96 −154.49 51.30 11.38 545.34 4.18

Ca0.80Nd0.2MnO3 223.76 −161.25 −160.39 43.84 13.78 650.69 3.33
Ca0.85Nd0.15MnO3 230.92 −162.40 −161.42 45.15 14.30 674.95 3.37
Ca0.90Nd0.1MnO3 238.48 −163.56 −162.46 46.54 14.87 701.15 3.42

Ca0.80Th0.20MnO3 200.76 −158.31 −157.99 39.32 12.65 605.91 3.15
Ca0.85Th0.15MnO3 212.71 −160.03 −159.23 41.34 13.36 639.75 3.22
Ca0.90Th0.10MnO3 225.80 −161.76 −160.53 43.58 14.15 677.61 3.31
Ca0.95Th0.05MnO3 240.08 −163.52 −161.85 46.00 15.03 719.75 3.40

Ca0.80Bi0.20MnO3 221.64 −160.56 −159.77 43.13 13.33 637.31 3.31
Ca0.85Bi0.15MnO3 229.22 −161.78 −160.66 44.36 13.90 664.72 3.35
Ca0.90Bi0.10MnO3 237.30 −163.07 −161.67 45.86 14.56 694.90 3.40

a Reference [54]; b Reference [40]; c Reference [49]; d Reference [39];
e Reference [25]; f Reference [48, 11]; g Reference [26].

doping compounds. It further decreases progressively from the
Ca–Th series compounds to the Ca–Ce series (with maximum
variance). So, the slope of these curves seems to be inversely
proportional to the A-site cation variance:

∂ B/∂rA ∝ 1/σ 2
A. (21)

This simply implies that if the size of the doped ion is very
much different from that of the parent compound A-site ion
(Ca) (i.e. high A-site variance σ 2

A), then the variation of the
bulk modulus with the molar volume will be slower. This
size-dependent effect seems to be independent of the number
of electrons doped in the eg orbital of the parent compound,
i.e. the valence of the doped element.

3.4. Thermal properties

We have also computed the molecular force constant
f , reststrahlen frequency ν0, Debye temperature θD and
Grüneisen parameter γ in the low temperature regime, below
the magnetic transition temperature for these electron doped
compounds, and results are reported in table 3. These values
can be compared with the calculated values for the parent

compound CaMnO3 given in table 3, revealing clearly the
large effect of electron doping on the thermal properties of
CaMnO3. The value of the Grüneisen parameter below the
transition temperature TN seems to be reasonable since its
value lies between 2 and 3 as reported earlier [44]. In the
Debye approach we consider the vibrations of the collective
positive ion lattice with respect to the negative ion lattice.
The frequency of vibration obtained from this model is also
reported here as the reststrahlen frequency. It is clear from
table 3 that doping with rare earth cations (La–Nd), Bi3+ and
Th4+ decreases the reststrahlen frequency of the compound
CaMnO3. The reststrahlen frequency for these compounds is
close to the reported value of 8.58 THz for LaMnO3 [45], but
our comments on the reliability of these values must be limited
until reports of experimental data for these compounds appear.

It is to be noted that the high value of the Debye
temperature indicates higher phonon frequencies for these
doped compounds. The calculated values of the Debye
temperature are compared with the available experimental
data in table 3 and 4 but it is interesting to note that our
low temperature θD (table 3) are comparable to the Debye
temperatures often observed for perovskite oxides of ABO3-
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type structure. Our calculated value of 358 K for the Debye
temperature of LaMnO3 is close to the reported values of
302 K [46] and 369 K for oxygen deficient LaMnO3 from
Ghivelder et al [47]. Our HT θD is 497 K and it is close
to the reported value of 470 K of Talati et al [48]. For
Ca1−xLaxMnO3 with x = 0.10, 0.13, 0.17, 0.20, the HT θD

are close to the reported value of 650 K [49]. It is to be
noted from table 3 that the Debye temperatures of electron
doped compounds are less than the Debye temperature of
CaMnO3 and in turn it can be predicted that the specific
heat of electron doped compounds is higher. It can also be
observed from table 3 that the Debye temperature decreases
smoothly with increasing electron doping or increased electron
concentration in the eg orbital. These theoretical values of
lattice thermal properties can serve as a guide to experimental
workers in the future. The Debye temperatures estimated
from high temperature analysis of the lattice specific heat
in the paramagnetic phase and other thermal properties of
the electron doped manganites are reported in table 4, and
compared with the available earlier reports in table 4. The
results on cohesive properties indicate enhanced stability of
the paramagnetic phase at elevated temperatures. The bulk
modulus of these compounds is higher in the paramagnetic
phase due to the linearly increasing lattice distortions in this
phase compared to the spin ordered phase. Further, the
reststrahlen frequency is higher in this phase and it gives
higher Debye temperature in the paramagnetic phase for all
electron doped compounds. In turn, the lattice specific heat
of this phase is expected to reduce. If we compare the Debye
temperatures of x = 0.20 doped compounds, then tetravalently
doped compounds have somewhat lesser values of the Debye
temperature compared to the trivalently doped compounds.
The same can be observed for other doping concentrations
(tables 3 and 4). The Grüneisen parameter is above 3 for most
of the compounds in the paramagnetic phase, which indicates
the enhanced anharmonic effects in this temperature regime.

3.5. Specific heat

Now, to start the systematic investigations of the specific heat,
we divide the case of rare earth cation doping at the A-site in
CaMnO3 into two categories:

(a) when the doped ion radius is smaller and
(b) when the doped ion radius is larger than that of the parent

Ca2+ ion.

Doping at the A-site with smaller Ln3+/4+ cations (Ce4+,
Nd3+, Th4+) in CaMnO3 will favour increased buckling and
reduction in the Mn–O–Mn angle. Lattice distortions will
increase as the angle of rotation and tilt of the octahedra
increases. This type of doping will introduce large distortions
in the lattice and this effect will further accentuate with
increase of temperature. The low temperature (LT) bulk
modulus (below the magnetic transition temperature) is
observed to be different from the high temperature (HT; far
above Tc/TN) bulk modulus in our investigation. The Debye
temperature used for calculating the low temperature specific
heat is quite different from the Debye temperature at which

Figure 5. Specific heat of CaMnO3 (open triangles with line),
La0.1Ca0.9MnO3 (open squares with line) and experimental data
(solid symbols) of Cornelius et al [49].

the specific heat reaches its saturation value. Similar findings
were reported earlier also. To illustrate, it is clear from our
earlier investigations on LaMnO3 that the Debye temperature is
dependent on the temperature and its value at high temperature
is more than the value at low temperatures [11]. It is also
established that, for compounds whose low temperature (LT)
Debye temperature is different from the high temperature
(HT) Debye temperature, a Debye model with one Debye
temperature (LT) does not account for all of the specific heat,
as the contribution of optical phonons at higher temperature
cannot be neglected and some other formulation such as the
Einstein model is needed to account for the specific heat at
higher temperatures.

Experimentally it is observed that the superexchange angle
Mn–O–Mn increases with increasing external pressure and a
similar effect can be observed by increasing the average cation
size at the A-site (substitution with a larger cation) in CaMnO3.
In the case of larger cation (La3+, Bi3+) doping at the A-
site in CaMnO3 manganites, this effect of doped cation size
on the superexchange angle can be observed. The increasing
Mn–O–Mn angle will straighten the cell edges and reduce the
lattice distortions. Thus the lattice distortions are reduced in
such doped compounds, the effect of distortions on the bulk
modulus will be less and the Debye temperature extracted
from the low temperature specific heat will be quite similar
to the Debye temperature at which the specific heat reaches
its saturation value. Such solids can be thought of as Debye
solids [43].

On the basis of above discussion we have calculated
the specific heat for CaMnO3 and Ca0.9La0.1MnO3 over the
temperature range 0 K � T � 20 K and the results
are displayed in figure 5. The low temperature specific
heat of CaMnO3 and La0.1Ca0.9MnO3 is compared with the
experimental data of Cornelius et al [49] and the match is found
to be satisfactory. Our calculated values of the low temperature
specific heat for CaMnO3 and La0.1Ca0.9MnO3 are slightly
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Figure 6. Lattice specific heat of the electron doped compound
Ca1−x Lax MnO3 in the 25 K < T < 500 K temperature interval. The
curves for x = 0.13, 0.17, 0.20, 0.25 are shifted upward by 10 J,
20 J, 30 J, 40 J respectively from the x = 0.10 curve for clarity. The
curve for x = 0.10 is undisplaced.

Figure 7. Lattice specific heat of Ca0.8La0.2MnO3 (cross with line)
predicted in the antiferromagnetic region below the magnetic
transition temperature TN and its comparison with the experimental
curves for Ca0.75La0.25MnO3 of Zheng et al [50]. Also shown is the
calculated specific heat (solid square with line) predicted for the
paramagnetic region (above TN).

higher than the experimental values, which indicates that our
model has slightly underestimated the Debye temperature at
lower temperatures. Here, the calculated specific heat values
in the lower temperature region of T < (θD/50) are estimated
with the help of (9).

Further, the specific heat of electron doped compounds
is calculated with (8), varying the temperature in the range
10 K < T < 500 K, and the results are displayed for
Ca1−xLaxMnO3 representative compounds in figure 6 for
25 K < T < 500 K. These values are compared with the
available experimental data in subsequent figures. In figure 7
the specific heat of Ca0.8La0.2MnO3 can be compared with
the experimental curves for Ca0.75La0.25MnO3 given by Zheng

La1-xCaxMnO3
0.87

0.83

Figure 8. The lattice specific heat of Ca0.83La0.17MnO3 (solid circle
with line) and Ca0.87La0.13MnO3 (solid triangle with line) calculated
with the LT Debye temperature is compared with the experimental
specific heat curves of Qian et al [51] (open squares and circles with
line). The calculated as well as the experimental curves for
Ca0.87La0.13MnO3 have been shifted upward by 25 J for clarity.

et al, due to the lack of experimental data at the same doping
parameter [50]. The specific heat calculated with the LT Debye
temperature (table 3) in the antiferromagnetic phase of the
compound (below TN) shows a satisfactory match. Above TN

the specific heat estimation using the HT Debye temperature
(table 3) is not so good but the trend of variation of specific
heat is similar to that for the experimentally observed data. The
observed peak in the experimental curves around TC can be
reproduced in the calculated values by adding the contribution
due to ferromagnetic spin wave interactions and additional
specific heat due to charge ordering, which was not estimated
in the present work. The estimation of these contributions is
beyond the scope of the present model potential.

Figure 8 shows the temperature dependence of the specific
heat of Ca0.83La0.17MnO3 and Ca0.87La0.13MnO3 and the
comparison with the experimental specific heat curves of Qian
et al [51]. The match of the specific heat values using the
LT Debye temperatures of 528 K and 540 K for x = 0.17
and x = 0.13 respectively is however not very satisfactory,
but our calculated values for the specific heat are more or less
near the experimental curves and the peak observed in the
experimental specific heat curves at ∼175 K due to A-type AF
ordering could not be observed in the calculated curves. The
difference can be attributed to non-inclusion of the magnetic
spin wave (Cm) and charge ordering (C ′) contributions to the
specific heat. It is well known that the specific heat of Ln doped
CaMnO3 at low temperatures in the electron doped region of
the phase diagram is

Cv = Cv(lattice) + Cm + C ′ (22)

where the first term is the lattice contribution which constitutes
the major part of the specific heat and is calculated by us
using the MRIM, the second term is the ferromagnetic spin
wave contribution effective below the magnetic transition
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NdMnO3

NdGaO3

Figure 9. Lattice specific heat of NdMnO3 and CaMnO3, using two Debye temperatures in the antiferromagnetic phase (below TN)
and paramagnetic phase (above TN), and the comparison of calculated values with experimental data of Berggold et al [52] and
Moritomo et al [53].

(This figure is in colour only in the electronic version)

temperature only and the last term is the specific heat due to
excess entropy observed in the charge ordered systems.

The value of the ferromagnetic spin wave contribution
to the specific heat Cm can be calculated from the following
expression:

Cm = 0.113V kB

[
kB

D

]1.5

T 3/2 (23)

where V is the molar volume, kB is Boltzmann’s constant and
D is the spin wave stiffness constant.

The lattice specific heat results obtained using two Debye
temperatures (above and below TN) are given in figure 9
for NdMnO3 and CaMnO3, and the comparison with the
experimental data of Berggold et al [52] and Moritomo et al
[53] is also shown in the same figure. The Debye temperature
of these compounds below TN is found to be different from the
stable room temperature paramagnetic phase values. Hence
the two-Debye-temperature model, for above and below the
magnetic transition temperature, can predict the lattice specific
heat satisfactorily over a broader range of temperature. The
present results indicate that the spin ordered phase is less
distorted and has higher compressibility as compared to the
paramagnetic phase for these electron doped compounds.
The specific heat of the compound is more in the ordered
phase compared to the paramagnetic phase. Figure 10 shows
the calculated specific heat of CaMnO3 with one Debye
temperature and its comparison with experimental curves of
Moritomo et al [53]. It is clear from figure 10 that the values
calculated with one HT Debye temperature do not give a
satisfactory match below TN.

Figure 10. Lattice specific heat of CaMnO3 predicted with the HT
Debye temperature (open circle with line) and its comparison with
data of Moritomo et al [53] (solid circle with line).

4. Conclusion

We studied CaMnO3 substituted with trivalent (Ln = La, Pr,
Nd, Bi) and tetravalent (Ce, Th) cations at the A-site as
regards its thermal properties and the effect of various lattice
distortions on these properties.

On the basis of the overall discussion, it may be concluded
that the modified rigid ion model (MRIM) is capable of
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giving a satisfactory prediction of the thermal properties of
electron doped CaMnO3. We have found that in electron doped
materials, the Debye temperature decreases with increasing
electron doping. The specific heat correspondingly increases
with increasing electron doping level. The decrease in θD

indicates that an anomalous softening of the lattice or increase
in the T 3 term in the specific heat occurs with increase of the
electron doping. Our results are probably the first reports of
the lattice specific heat at these temperatures and compositions.
We have also reproduced the various lattice distortions and
their relation to elastic properties systematically, and then that
to the thermal properties of the lattice. In the insulating
paramagnetic state, distortions of the Mn–O environment are
linear with calcium concentration. In the low temperature
ferromagnetic/spin ordered state, at least 50% of the distortion
is removed due to spin ordering. The findings indicate that
strong coupling between spin and lattice degrees of freedom
exists in these electron doped materials. The results are in
satisfactory agreement with the previous reports. A sharp peak
can be seen in figures 9 and 10 in the experimental curves
at their respective Néel temperatures due to spin interactions.
This feature cannot be revealed in the calculated curves by our
present MRIM.

We demonstrate that the electron concentration, size
mismatch and JT effects are the dominant factors, whereas
the charge mismatch and buckling of the Mn–O–Mn angle
influence the thermal properties to a lesser degree. The Debye
temperature of these compounds below TN is found to be
different from the stable room temperature paramagnetic phase
values. We also propose a two-Debye-temperature model for
above and below the magnetic transition temperature which
can predict the lattice specific heat satisfactorily over a broader
range of temperature.

Thus, the successful exposition of the temperature-
dependent thermal properties of electron doped Ca1−x Lnx

MnO3 (Ln = La, Ce, Pr, Nd, Th, Bi) attained by us
is remarkable in view of the inherent simplicity and less
parametric nature of the modified rigid ion model (MRIM).
Present results on specific heat could be further improved by
incorporating the effect of the interactions due to spin wave
and charge ordering contributions within the Debye approach.
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